Abstract
Bacteriophage T4 multiples poorly in Escherichia coli strains carrying the defective prophage, e14; the e14 prophage contains the lit gene for late inhibitor of T4 in E. coli. The exclusion is caused by the interaction of the e14-encoded protein, Lit, with a short RNA or polypeptide sequence encoded by gol from within the major head protein gene of T4. The interaction between Lit and the gol product causes a severe inhibition of all translation and prevents the transcription of genes downstream of the gol site in the same transcription unit. However, it does not inhibit most transcription, nor does it inhibit replication or affect intracellular levels of ATP. Here we show that the interaction of gol with Lit causes the cleavage of translation elongation factor Tu (EF-Tu) in a region highly conserved from bacteria to humans. The depletion of EF-Tu is at least partly responsible for the inhibition of translation and the phage exclusion. The only other phage-exclusion system to be understood in any detail also attacks a highly conserved cellular component, suggesting that phage-exclusion systems may yield important reagents for studying cellular processes.