Abstract
Despite the increased use of laminated glass (two monolithic layers of glass joined with an elastomeric interlayer—usually PVB—to form a unit) as a cladding material for architectural glazing applications and by now as a structural material, the mechanical properties and the structural capabilities of PVB laminated glass are not well known. This paper presents an analytical model that predicts stress development and ultimate strength of laminated glass beams involving a multilayered system that allows displacements in the shear flexible interlayer. The model may be applied to laminates of arbitrary shape and size under prevailing uniaxial bending. No specific simplifying assumption is made in formulating the procedure, so the modeling inaccuracy is marginal, as proved by comparing theoretical model predictions with test results. The model was then used for assessing the safety and predicting the failure strength of laminated glass products available in the architectural glass marketplace, in order to identify the basis for rational design with glass-polymer laminates. The closed form of the model permits us to both explain the behavior of laminated glass, and correlate the structural performance with the geometrical and mechanical parameters.
Keywords

This publication has 14 references indexed in Scilit: