Dielectric properties of brain tissue between 0.01 and 10 GHz

Abstract
Dielectric permittivity and conductivity are reported for grey and white matter from dog brain tissue between 0.01 and 10 GHz. Between 0.01 and approximately 1 GHz, the permittivity decreases and conductivity increases as a power law of frequency. Above 1 GHz, the conductivity increases quadratically with frequency due to dipolar reorientation of free water molecules in tissue; the apparent rotational relaxation frequency at 37 degrees C is 21-24 GHz, slightly below the 25 GHz characteristic frequency of pure water at that temperature. The microwave data are analysed using the Maxwell mixture theory applicable for a suspension of nonconducting, low permittivity spheres in bulk water. From the increase in conductivity above 1 GHz, and the tissue permittivity at 2-4 GHz, the apparent volume fraction of water is approximately 0.70 and 0.55 for grey and white matter, respectively, about 10-15% lower than respective values from the literature.