Size-dependent output power saturation of vertical-cavity surface-emitting laser diodes

Abstract
We demonstrate efficient vertical-cavity surface-emitting laser diodes with high output power levels. Improved output power in these pillar-etched devices is achieved through a 60% lower thermal resistance by using a 15-/spl mu/m-thick Au-plated heat spreading layer on the top surface with a size of 300/spl times/300 /spl mu/m/sup 2/. The maximum continous wave output power increases almost linearly with laser diameter, before it saturates at 42 mW for an unmounted Au-plated device of 64-/spl mu/m diameter. A simple analytical model describes the laser output characteristics and the size-dependent saturation behavior of the maximum output power.