Abstract
An approximate solution of the two-dimensional problem of reflexion of plane harmonic P and S V waves by an irregular boundary is obtained using a modification of Rice's perturbation method of approximation on the assumption that the curvature of the surface is everywhere small. The case of a periodic surface is treated in more detail. It is found that the reflected waves are composed of specularly reflected waves and various diffracted waves, propagating in both horizontal directions if the wavelength of the incident waves is long compared with that of the surface. If the wavelength of incident distortional waves is long compared with that of the surface, the amplitudes of some of the scattered waves decrease exponentially with depth. In general the phases of the waves change on reflexion and the phase angles of the reflected waves are functions of the wavelength of the corrugation and the angle of incidence. It is verified, in the case of zero angle of incidence, that the energy going into the scattered radiation is obtained at the expense of the energy of the specularly reflected waves.

This publication has 5 references indexed in Scilit: