The Emery–Dreifuss muscular dystrophy associated‐protein emerin is phosphorylated on serine 49 by protein kinase A
- 15 September 2006
- journal article
- Published by Wiley in The FEBS Journal
- Vol. 273 (19), 4562-4575
- https://doi.org/10.1111/j.1742-4658.2006.05464.x
Abstract
Emerin is a ubiquitously expressed inner nuclear membrane protein of unknown function. Mutations in its gene give rise to X-linked Emery-Dreifuss muscular dystrophy (X-EDMD), a neuromuscular condition with an associated life-threatening cardiomyopathy. We have previously reported that emerin is phosphorylated in a cell cycle-dependent manner in human lymphoblastoid cell lines [Ellis et al. (1998) Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the EDMD phenotype. J. Cell Sci. 111, 781-792]. Recently, five residues in human emerin were identified as undergoing cell cycle-dependent phosphorylation using a Xenopus egg mitotic cytosol model system (Hirano et al. (2005) Dissociation of emerin from BAF is regulated through mitotic phosphorylation of emerin in a Xenopus egg cell-free system. J. Biol. Chem.280, 39 925-39 933). In the present paper, recombinant human emerin was purified from a baculovirus-Sf9 heterogeneous expression system, analyzed by protein mass spectrometry and shown to exist in at least four different phosphorylated species, each of which could be dephosphorylated by treatment with alkaline phosphatase. Further analysis identified three phosphopeptides with m/z values of 2191.9 and 2271.7 corresponding to the singly and doubly phosphorylated peptide 158-DSAYQSITHYRPVSASRSS-176, and a m/z of 2396.9 corresponding to the phosphopeptide 47-RLSPPSSSAASSYSFSDLNSTR-68. Sequence analysis confirmed that residue S49 was phosphorylated and also demonstrated that this residue was phosphorylated in interphase. Using an in vitro protein kinase A assay, we observed two phospho-emerin species, one of which was phosphorylated at residue S49. Protein kinase A is thus the first kinase that has been identified to specifically phosphorylate emerin. These results improve our understanding of the molecular mechanisms underlying X-EDMD and point towards possible signalling pathways involved in regulating emerin's functions.Keywords
This publication has 42 references indexed in Scilit:
- Dissociation of Emerin from Barrier-to-autointegration Factor Is Regulated through Mitotic Phosphorylation of Emerin in a Xenopus Egg Cell-free SystemJournal of Biological Chemistry, 2005
- Lamins A and C are differentially dysfunctional in autosomal dominant Emery-Dreifuss muscular dystrophyEuropean Journal of Cell Biology, 2005
- Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscleJournal of Cell Science, 2005
- Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelopeExperimental Cell Research, 2005
- Emerin Caps the Pointed End of Actin Filaments: Evidence for an Actin Cortical Network at the Nuclear Inner MembranePLoS Biology, 2004
- Robust Phosphoproteomic Profiling of Tyrosine Phosphorylation Sites from Human T Cells Using Immobilized Metal Affinity Chromatography and Tandem Mass SpectrometryAnalytical Chemistry, 2004
- Multiple and surprising new functions for emerin, a nuclear membrane proteinCurrent Opinion in Cell Biology, 2004
- Direct Interaction between Emerin and Lamin ABiochemical and Biophysical Research Communications, 2000
- Signals and structural features involved in integral membrane protein targeting to the inner nuclear membrane.The Journal of cell biology, 1995
- Mitotic CDC2 kinase is negatively regulated by cAMP‐dependent protein kinase in mouse fibroblast cell free extractsCell Proliferation, 1993