An inherent role of microtubule network in the action of nuclear receptor
- 24 October 2006
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 103 (43), 15981-15986
- https://doi.org/10.1073/pnas.0607445103
Abstract
Estrogen receptor alpha (ERalpha) functions as both a transcription factor and a mediator of rapid estrogen signaling. Recent studies have shown a role for ERalpha-interacting membranous and cytosolic proteins in ERalpha action, but our understanding of the role of the microtubule network in the modulation of ERalpha signaling remains unclear. Here we found that endogenous ERalpha associates with microtubules through the microtubule-binding protein hematopoietic PBX-interaction protein (HPIP). Biochemical and RNA-interference studies demonstrated that HPIP influences ERalpha-dependent rapid estrogen signaling by acting as a scaffold protein and recruits Src kinase and the p85 subunit of phosphatidylinositol 3-kinase to a complex with ERalpha, which in turn stimulates AKT and MAPK. We also found that ERalpha interacts with beta-tubulin through HPIP. Destabilization of microtubules activated ERalpha signaling, whereas stabilization of microtubules repressed ERalpha transcriptional activity in a HPIP-dependent manner. These findings revealed a role for HPIP-microtubule complex in regulating 17beta-estradiol-ERalpha responses in mammalian cells and discovered an inherent role of microtubules in the action of nuclear receptor.Keywords
This publication has 19 references indexed in Scilit:
- Nature of Functional Estrogen Receptors at the Plasma MembraneMolecular Endocrinology, 2006
- Estrogen and Tamoxifen Induce Cytoskeletal Remodeling and Migration in Endometrial Cancer CellsEndocrinology, 2006
- Steering estrogen signals from the plasma membrane to the nucleus: Two sides of the coinJournal of Cellular Physiology, 2005
- Functional Implications of Altered Subcellular Localization of PELP1 in Breast Cancer CellsCancer Research, 2005
- REGULATION OF SIGNAL TRANSDUCTION PATHWAYS BY ESTROGEN AND PROGESTERONEAnnual Review of Physiology, 2005
- Analysis of estrogen receptor α signaling complex at the plasma membraneFEBS Letters, 2004
- Microtubule Binding to Smads May Regulate TGFβ ActivityMolecular Cell, 2000
- Microtubules and signal transductionCurrent Opinion in Cell Biology, 1999
- SH3 — an abundant protein domain in search of a functionFEBS Letters, 1992
- VARIATIONS IN CELL FORM AND CYTOSKELETON IN HUMAN-BREAST CARCINOMA-CELLS INVITRO1980