Abstract
We constructed a series of deletions in the 5' noncoding region of the Saccharomyces cerevisiae GAL7 gene, fused them to the Escherichia coli gene lacZ, and introduced them into yeasts by using a multicopy vector. We then studied the effect of the deletions on beta-galactosidase synthesis directed by the gene fusions in media with various carbon sources. This analysis identified a TATA box and two upstream activating sequences as necessary elements for galactose-controlled GAL7 transcription. Two upstream activating sequences exhibiting 71% homology with each other were located 255 and 168 base pairs, respectively, upstream of the GAL7 transcription start point. Each sequence consists of 21 base pairs, displaying an approximate rotational symmetry with a core consensus sequence of GAA--AGCTGCTTC--CGCG. At least one of the two sequences is required for galactose induction and also for glucose repression of the GAL7'-lac'Z gene. Analysis with host regulatory mutants delta gal14 and delta gal180 suggests that these sequences are the site at which the GAL4 product exerts its action to activate the GAL7 gene. We also observed that a deletion lacking both upstream activation sequences allowed the gene fusion to be expressed in the absence of galactose at about 10% of the fully induced level of the intact fusion. This constitutive expression depended on the presence of the TATA box of GAL7 in cis but not on a functional GAL4 gene. The level of the uncontrolled expression was decreased by increasing the distance between the TATA box and the pBR322 sequence in the vector plasmid.