In Vitro Human Immunodeficiency Virus Type 1 Resistance Selections with Combinations of Tenofovir and Emtricitabine or Abacavir and Lamivudine
- 1 December 2006
- journal article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 50 (12), 4087-4095
- https://doi.org/10.1128/aac.00816-06
Abstract
Human immunodeficiency virus type 1 (HIV-1) resistance development was evaluated in vitro by using combinations of the drugs tenofovir and emtricitabine or abacavir and lamivudine, as well as by using the compounds individually. Emtricitabine- and lamivudine-resistant HIV-1 isolates with the M184I or M184V mutation in reverse transcriptase were readily selected in the cultures with emtricitabine alone, lamivudine alone, and the two drug combinations and conferred high-level resistance to emtricitabine and lamivudine. Tenofovir-resistant HIV-1 isolates with the K65R mutation occurred in both the culture with tenofovir alone and the culture with the combination of emtricitabine and tenofovir. The S68N and S68K mutations were also observed in the tenofovir cultures, with no detectable impact on resistance, suggesting a possible compensatory role in viral fitness. At low concentrations of emtricitabine and tenofovir, the M184I mutation appeared first, followed by the K65R mutation, in a subset of viruses. At intermediate concentrations of emtricitabine and tenofovir, viruses harboring the K65R mutation or a novel K65N and K70R double mutation grew before they gave rise to mutants with K65R and M184V/I double mutations at higher emtricitabine concentrations. Abacavir resistance was characterized by the accumulation of the M184V, Y115F, and K65R mutations in the abacavir culture, while the M184V and L74V mutations were selected in combination with lamivudine. In the presence of the abacavir resistance mutations, viral growth was strong even in the presence of high concentrations of abacavir. In contrast, viral growth was markedly impaired in the cultures with high tenofovir concentrations, even in the presence of K65R. In conclusion, these studies show that HIV-1 mutants with a K65R and M184V genotype are generated under maximum selection pressure from the combination of tenofovir and emtricitabine.Keywords
This publication has 43 references indexed in Scilit:
- Resistance development over 144 weeks in treatment‐naive patients receiving tenofovir disoproxil fumarate or stavudine with lamivudine and efavirenz in Study 903*HIV Medicine, 2006
- A rare HIV reverse transcriptase mutation, K65N, confers reduced susceptibility to tenofovir, lamivudine and didanosineAIDS, 2006
- Comparative Selection of the K65R and M184V/I Mutations in Human Immunodeficiency Virus Type 1-Infected Patients Enrolled in a Trial of First-Line Triple-Nucleoside Analog Therapy (Tonus IMEA 021)Journal of Virology, 2005
- Diminished Replicative Fitness of Primary Human Immunodeficiency Virus Type 1 Isolates Harboring the K65R MutationJournal of Clinical Microbiology, 2005
- Efficacy and Safety of Tenofovir DF vs Stavudine in Combination Therapy in Antiretroviral-Naive PatientsA 3-Year Randomized TrialJAMA, 2004
- CD8+-Cell-Mediated Suppression of Virulent Simian Immunodeficiency Virus during Tenofovir TreatmentJournal of Virology, 2004
- Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutation Selection during In Vitro Exposure to Tenofovir Alone or Combined with Abacavir or LamivudineAntimicrobial Agents and Chemotherapy, 2004
- Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase Inhibit Phosphorolysis and Resensitize the 3′-Azido-3′-deoxythymidine (AZT)-resistant Polymerase to AZT-5′-triphosphateJournal of Biological Chemistry, 2003
- Tenofovir, Adefovir, and Zidovudine Susceptibilities of Primary Human Immunodeficiency Virus Type 1 Isolates with Non-B Subtypes or Nucleoside ResistanceAIDS Research and Human Retroviruses, 2001
- New Soluble-Formazan Assay for HIV-1 Cytopathic Effects: Application to High-Flux Screening of Synthetic and Natural Products for AIDS-Antiviral ActivityJNCI Journal of the National Cancer Institute, 1989