The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering

Abstract
Calorimetric measurements of metal adsorption energies directly provide the energies of metal atoms in supported metal nanoparticles. As the metal coverage increases, the particles grow, revealing the dependence of this energy on particle size, which is found to be much stronger than predicted with the usual Gibbs-Thompson relation. It is shown that this knowledge is crucial to accurately model long-term sintering rates of metal nanoparticles in catalysts.