Abstract
Experiments and analysis, reported in detail in references [1] through [5], demonstrated that high-speed rotors, supported by foil bearings, were free from whirl-instability and sensitivity to excitation at frequency equal one half the speed of rotation. It was shown also that the foil bearing could accommodate thermal and geometrical distortions, combining this attribute with excellent wipe-wear characteristics and tolerance of particles. The present investigation was directed toward the solution of two important problems: (a) the reduction of foil bearing length without detriment to rotor performance, and (b) the elimination of the foil-lift system and attainment of multiple start-stops without the aid of external pressurization. A description of experimental methods, which lead to the realization of the foregoing objectives, is given.