Dissociation of guanosine 5′‐[γ‐thio]triphosphate from guanine‐nucleotide‐binding regulatory proteins in native cardiac membranes
- 3 March 1992
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 204 (2), 725-731
- https://doi.org/10.1111/j.1432-1033.1992.tb16687.x
Abstract
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.Keywords
This publication has 38 references indexed in Scilit:
- Receptor-effector coupling by G proteinsBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1990
- Activation of cardiac G-proteins by muscarinic acetylcholine receptors: regulation by Mg2+ and Na+ ionsEuropean Journal of Pharmacology: Molecular Pharmacology, 1989
- The role of nucleoside‐diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotidesEuropean Journal of Biochemistry, 1988
- G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-sodium channel interactionBiochemistry, 1988
- G PROTEINS: TRANSDUCERS OF RECEPTOR-GENERATED SIGNALSAnnual Review of Biochemistry, 1987
- G Proteins: Transducers Of Receptor-Generated SignalsAnnual Review of Biochemistry, 1987
- Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogueNature, 1985
- Activation of Turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5′-(γ-thio) triphosphateBiochemical and Biophysical Research Communications, 1977
- The activation of adenylate cyclase by 1‐epinephrine and guanylylimidodiphosphate and its reversal by 1‐epinephrine and GTPFEBS Letters, 1977
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976