The interaction between a solitary wave and a submerged semicircular cylinder

Abstract
Numerical solutions for fully nonlinear two-dimensional irrotational free-surface flows form the basis of this study. They are complemented and supported by a limited number of experimental measurements. A solitary wave propagates along a channel which has a bed containing a cylindrical bump of semicircular cross-section, placed parallel to the incident wave crest. The interaction between wave and cylinder takes a variety of forms, depending on the wave height and cylinder radius, measured relative to the depth. Almost all the resulting wave motions differ from the behaviour which was anticipated when the study began. In particular, in those cases where the wave breaks, the breaking occurs beyond the top of the cylinder. The same wave may break in two different directions: forwards as usual, and backwards towards the back of the cylinder. In addition small reflected waves come from the region of uniform depth beyond the cylinder. Experimental results are reported which confirm some of the predictions made. The results found for solitary waves are contrasted with the behaviour of a group of periodic waves.