Mechanical Strain Stimulates ROS Cell Proliferation Through IGF‐II and Estrogen Through IGF‐I

Abstract
The mechanism by which mechanical strain stimulates bone cell proliferation was investigated and compared with that of estrogen in ROS 17/2.8 cells. Similarity of strain-related responses between ROS cells and osteoblasts was established by demonstrating that ROS cells respond to a short single period of strain in their substrate (1000-3500 microepsilon, 600 cycles, 1 Hz) by a similar strain magnitude-related increase in glucose 6-phosphate dehydrogenase activity as rat osteoblasts and osteocytes in explants in situ. ROS17/2.8 cells also showed similar proliferative responses to strain and 17beta-estradiol, as assessed by [3H]thymidine incorporation and cell counting, as primary cultures of long bone-derived osteoblast-like cells. Strain-related increase in proliferation in ROS cells was accompanied by a 4-fold increase in levels of insulin-like growth factor-II (IGF-II) in conditioned medium. Neither strain nor estrogen had an effect on the conditioned medium levels of IGF-I. Exogenous truncated IGFs tIGF-I and tIGF-II both increased proliferation in a dose-dependent manner. The neutralizing monoclonal antibody (nMAb) to IGF-I blocked proliferation stimulated by tIGF-I but not that due to tIGF-II and vice versa. IGF-I receptor blocking antibody (IGF-IRBAb) blocked the proliferative effect of tIGF-I but not that to tIGF-II. The proliferative effect of estrogen was abolished by IGF-I nMAb and IGF-IRBAb, but these antibodies had no effect on the proliferative response to strain. In contrast IGF-II nMAb abolished the proliferative effect of strain but had no effect on that of estrogen. These data show that ROS17/2.8 cells have similar responses to strain and estrogen qualitatively and quantitatively as rat osteoblasts in situ and rat long bone-derived osteoblast-like cells in primary culture. Estrogen-related proliferation in ROS17/2.8 cells appears to be mediated by IGF-I acting through the IGF-I receptor and does not involve IGF-II. In contrast, strain-related proliferation appears to be mediated by IGF-II and does not involve either IGF-I or the IGF-I receptor.

This publication has 57 references indexed in Scilit: