Observations on the solitary cilium of rabbit oviductal epithelium: Its motility and ultrastructure

Abstract
Solitary cilia have been observed on rabbit oviductal epithelial cells. In tissue cultures of fimbrial epithelium of 3- and 4-day-old animals observed by phase microscopy, most of these single cilia exhibited a vortical or funnel-type movement while others had the usual to-and-fro motility. Primary cilia are usually considered immotile. Transmission electron microscopy of specifically identified single cilia revealed differences between the ciliary shafts and basal bodies of the single cilia as compared to those of mature oviductal ciliated cells. The basal body of the solitary cilium often had at least two triangular, striated, basal foot processes, lacked electron-dense satellite material around its basal end, and occasionally had striated rootlets. In contrast, the cilia of mature ciliated cells had only one basal foot, exhibited much electron-dense satellite material, and lacked rootlets. Cross sections of the single cilia showed patterns of microtubules different from the usual 9 + 2 axonemal complexes of normal cilia and included 9 + 0, 10 + 2 singlets, 7 + 2 doublets, and 8 + 1 doublet and 2 singlets; one did have the usual 9 + 2 arrangement. We postulate that the presence of more than one basal foot process may be responsible for the vortical motility observed. The primary cilia are shorter than normal cilia; the longest one measured was 1.86 μm in length, 0.28 μm in width at its base, and 0.14 μm at its tip. Based on the lightmicroscopic, scanning-electron-microscopic and transmission-electron-microscopic observations, such solitary cilia were observed more frequently in the oviductal tissues of the 3- to 4-day postnatal rabbits grown in tissue culture and in ovariectomized and ovariectomized/progesterone-treated adult animals than in estrous, ovulatory, or ovariectomized/estradiol-treated rabbits.