International relations theorists tend to think in terms of continuous processes. Yet we observe only discrete events, such as wars or alliances, and summarize them in terms of the frequency of occurrence. As such, most empirical analyses in international relations are based on event count variables. Unfortunately, analysts have generally relied on statistical techniques that were designed for continuous data. This mismatch between theory and method has caused bias, inefficiency, and numerous inconsistencies in both theoretical arguments and empirical findings throughout the literature. This article develops a much more powerful approach to modeling and statistical analysis based explicitly on estimating continuous processes from observed event counts. To demonstrate this class of models, I present several new statistical techniques developed for and applied to different areas of international relations. These include the influence of international alliances on the outbreak of war, the contagious process of multilateral economic sanctions, and reciprocity in superpower conflict. I also show how one can extract considerably more information from existing data and relate substantive theory to empirical analyses more explicitly with this approach.