Abstract
In this paper the propagation of fronts into an unstable state are studied. Such fronts can occur e.g., in the form of domain walls in liquid crystals, or when the dynamics of a system which is suddenly quenched into an unstable state is dominated by domain walls moving in from the boundary. It was emphasized recently by Dee et al. that for sufficiently localized initial conditions the velocity of such fronts often approaches the velocity corresponding to the marginal stability point, the point at which the stability of a front profile moving with a constant speed changes. I show here when and why this happens, and advocate the marginal stability approach as a simple way to calculate the front velocity explicitly in the relevant cases. I sketch the physics underlying this dynamical mechanism with analogies and, building on recent work by Shraiman and Bensimon, show how an equation for the local ‘‘wave number’’ that may be viewed as a generalization of the Burgers equation, drives the front velocity to the marginal stability value. This happens provided the steady-state solutions lose stability because the group velocity for perturbations becomes larger than the envelope velocity of the front.

This publication has 43 references indexed in Scilit: