Genetic reinforcement learning for neural networks

Abstract
It is pointed out that the genetic algorithms which have been shown to yield good performance for neural network weight optimization are really genetic hill-climbers, with a strong reliance on mutation rather than hyperplane sampling. Neural control problems are more appropriate for these genetic hill-climbers than supervised learning applications because in reinforcement learning applications gradient information is not directly available. Genetic reinforcement learning produces competitive results with the adaptive heuristic critic method, another reinforcement learning paradigm for neural networks that employs temporal difference methods. The genetic hill-climbing algorithm appears to be robust over a wide range of learning conditions.<>