Metal-insulator transition in highly disordered carbon fibers

Abstract
The electronic transition from localized to delocalized states of carriers in a disordered carbon material is investigated by photoconductivity measurements. Phenol-derived activated carbon fibers, where the carriers are strongly localized due to disorder, are heat treated in the range 300–2500 °C to give rise to the insulator-metal transition. Dark conductivity, Raman spectra, and x-ray diffraction patterns are also measured to characterize their structural changes. As a result, the transition temperature was determined to be rather low, around 1000 °C, considering the rapid decrease in the photoconductivity above this temperature. This decrease was ascribed to a fast recombination between the photoexcited carriers and the delocalized carriers generated by heat treatment.

This publication has 20 references indexed in Scilit: