Characterization of the mouse transforming growth factor-beta 1 promoter and activation by the Ha-ras oncogene.

Abstract
We have cloned and sequenced a mouse genomic transforming growth factor beta 1 (TGF-beta 1) DNA fragment that includes the 5' untranslated and regulatory regions of the gene. High-sequence homology with the human TGF-beta 1 gene (66% nucleotide identity in 2.7 kb of DNA upstream of the translational start site) suggested evolutionary conservation of transcriptional regulation for TGF-beta 1. The absence of TATA or CAAT box sequences but the presence of several Sp1-binding and AP-2-like sequences in the promoter region was noted, as previously reported for the human gene. Two transcriptional initiation sites separated by 290 bp were identified by S1 nuclease analysis; these corresponded to transcripts with 866 and 576 nucleotides of 5' untranslated leader sequence. S1 analysis of different mouse tissues indicated that the two transcripts were present in the same ratio even though the total level of TGF-beta 1 mRNA transcripts varied between tissues. Promoter activity adjacent to both transcriptional start sites was demonstrated by using chloramphenicol acetyltransferase fusion genes assayed in mouse AKR-2B fibroblast cells. Transcriptional activation of the promoter by the Ha-ras oncogene was also demonstrated. The minimal promoter constructs (113 and 104 bp 5' of the first and second transcriptional start sites, respectively) were sufficient for induction by Ha-ras. These studies characterize the 5' structure and basal promoter activity of the mouse TGF-beta 1 gene as well as the transcriptional activation of TGF-beta 1 by the Ha-ras oncogene.