Effective bifurcation analysis: a time-stepper-based approach

Abstract
We introduce a numerical approach to perform the effective (coarse-scale) bifurcation analysis of solutions of dissipative evolution equations with spatially varying coefficients. The advantage of this approach is that the `coarse model' (the averaged, effective equation) need not be explicitly constructed. The method only uses a time-integrator code for the detailed problem and judicious choices of initial data and integration times; the bifurcation computations are based on the so-called recursive projection method (Shroff and Keller 1993 SIAM J. Numer. Anal. 30 1099-120).