Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor

Abstract
Large-area manganese oxide nanorod arrays (MONRAs) and herringbones (MOHBs) were successfully synthesized on F-doped SnO2 coated glass (FTO) substrates by a simple electrochemical method. Cyclic voltammetry (CV) and galvanostatic charge/discharge measurements demonstrated that the MONRAs and MOHBs exhibited excellent specific capacitance and good cycling stability in 0.5 M Na2SO4 aqueous solution. For example, the specific capacitance of the MONRAs achieves as high as 660.7 F g−1 at a scan rate of 10 mV s−1 and 485.2 F g−1 at a current density of 3 A g−1, respectively. Furthermore, the presented method may be extended to allow similar MONRs with a specific capacitance of 583.6 F g−1 to grow on flexible Ti foil, which may have great potential application in fabricating flexible supercapacitors.