Detection and identification of human bronchoalveolar lavage proteins using narrow-range immobilized pH gradient DryStrip and the paper bridge sample application method

Abstract
The use of two-dimensional gel electrophoresis as a tool for the investigation of human bronchoalveolar lavage fluid (BALF) has been hampered by technical difficulties. In the last decade attempts have been made to establish a two-dimensional (2-D) protein map of BALF samples, resulting in the identification of a number of proteins present in BALF. In this study, we report an improved sample handling and separation protocol for investigation of human BALF proteins. The sample has been analyzed by employing a number of strategies, including the ‘paper bridge’ sample application method in combination with narrow range immobilized pH gradient (IPG) DryStrips, followed by comparison to the corresponding plasma map. Using peptide mass fingerprinting, we have identified 49 proteins in the narrow pH range 4.5–5.2 from an individual healthy BALF sample. Furthermore, we identified 17 BALF proteins, not detected in plasma. Twelve of these proteins have, to our knowledge, not previously been described in the BALF 2-D map. The mapping of BALF proteins with inclusion of those at low concentration increases the possibility to subsequently screen patient material for disease markers.