Gab1 and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation
Open Access
- 7 October 2002
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 159 (1), 103-112
- https://doi.org/10.1083/jcb.200205017
Abstract
În epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1−/− murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1−/− epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling.Keywords
This publication has 49 references indexed in Scilit:
- The gift of GabFEBS Letters, 2002
- Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiationOncogene, 2002
- Dockers at the crossroadsCellular Signalling, 2002
- A Critical Role for Phosphoinositide 3-Kinase Upstream of Gab1 and SHP2 in the Activation of Ras and Mitogen-activated Protein Kinases by Epidermal Growth FactorJournal of Biological Chemistry, 2001
- Targeted Genomic Disruption of H-ras and N-ras, Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and DevelopmentMolecular and Cellular Biology, 2001
- Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesisOncogene, 2000
- A Grb2-associated docking protein in EGF- and insulin-receptor signallingNature, 1996
- Induction of epidermal hyperplasia, hyperkeratosis, and papillomas in transgenic mice by a targeted v‐Ha‐ras oncogeneMolecular Carcinogenesis, 1993
- Expression of epidermal growth factor (EGF) and the EGF receptor in human tissuesJournal of Experimental Zoology, 1991
- Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoterCell, 1990