Dual Energy CT of the Chest
Top Cited Papers
- 1 June 2010
- journal article
- research article
- Published by Wolters Kluwer Health in Investigative Radiology
- Vol. 45 (6), 347-353
- https://doi.org/10.1097/rli.0b013e3181df901d
Abstract
Objective: New generation Dual Source computed tomography (CT) scanners offer different x-ray spectra for Dual Energy imaging. Yet, an objective, manufacturer independent verification of the dose required for the different spectral combinations is lacking. The aim of this study was to assess dose and image noise of 2 different Dual Energy CT settings with reference to a standard chest scan and to compare image noise and contrast to noise ratios (CNR). Also, exact effective dose length products (E/DLP) conversion factors were to be established based on the objectively measured dose. Materials and Methods: An anthropomorphic Alderson phantom was assembled with thermoluminescent detectors (TLD) and its chest was scanned on a Dual Source CT (Siemens Somatom Definition) in dual energy mode at 140 and 80 kVp with 14 × 1.2 mm collimation. The same was performed on another Dual Source CT (Siemens Somatom Definition Flash) at 140 kVp with 0.8 mm tin filter (Sn) and 100 kVp at 128 × 0.6 mm collimation. Reference scans were obtained at 120 kVp with 64 × 0.6 mm collimation at equivalent CT dose index of 5.4 mGy*cm. Syringes filled with water and 17.5 mg iodine/mL were scanned with the same settings. Dose was calculated from the TLD measurements and the dose length products of the scanner. Image noise was measured in the phantom scans and CNR and spectral contrast were determined in the iodine and water samples. E/DLP conversion factors were calculated as ratio between the measured dose form the TLDs and the dose length product given in the patient protocol. Results: The effective dose measured with TLDs was 2.61, 2.69, and 2.70 mSv, respectively, for the 140/80 kVp, the 140 Sn/100 kVp, and the standard 120 kVp scans. Image noise measured in the average images of the phantom scans was 11.0, 10.7, and 9.9 HU (P > 0.05). The CNR of iodine with optimized image blending was 33.4 at 140/80 kVp, 30.7 at 140Sn/100 kVp and 14.6 at 120 kVp. E/DLP conversion factors were 0.0161 mSv/mGy*cm for the 140/80 kVp protocol, 0.0181 mSv/mGy*cm for the Sn140/100 kVp mode and 0.0180 mSv/mGy*cm for the 120 kVp examination. Conclusion: Dual Energy CT is feasible without additional dose. There is no significant difference in image noise, while CNR can be doubled with optimized dual energy CT reconstructions. A restriction in collimation is required for dose-neutrality at 140/80 kVp, whereas this is not necessary at 140 Sn/100 kVp. Thus, CT can be performed routinely in Dual Energy mode without additional dose or compromises in image quality.Keywords
This publication has 28 references indexed in Scilit:
- Dual Source Dual-Energy Computed Tomography of Acute Myocardial InfarctionInvestigative Radiology, 2010
- Enhanced Visualization of Lung Vessels for Diagnosis of Pulmonary Embolism Using Dual Energy CT AngiographyInvestigative Radiology, 2010
- Xenon Ventilation Imaging Using Dual-Energy Computed Tomography in AsthmaticsInvestigative Radiology, 2010
- Carotid Computed Tomography Angiography With Automated Bone SuppressionInvestigative Radiology, 2009
- The Value of Dual-Energy Bone Removal in Maximum Intensity Projections of Lower Extremity Computed Tomography AngiographyInvestigative Radiology, 2009
- Cervical and Cranial Computed Tomographic Angiography With Automated Bone RemovalInvestigative Radiology, 2009
- Evaluation of non-linear blending in dual-energy computed tomographyEuropean Journal of Radiology, 2008
- Converting Dose-Length Product to Effective Dose at CTRadiology, 2008
- Dual-Energy Contrast-Enhanced Computed Tomography for the Detection of Urinary Stone DiseaseInvestigative Radiology, 2007
- Diagnostic Accuracy of Dual-Source Computed Tomography in the Diagnosis of Coronary Artery DiseaseInvestigative Radiology, 2007