Abstract
Transformation of competent cells of Bacillus subtilis with antibiotic resistance plasmid DNA has shown that (a) competence for plasmid and chromosomal DNA develops with similar kinetics; (b) DNA linearized with a variety of restriction endonucleases does not transform; (c) CCC plasmid DNA is inactivated for transformation by a single nick; (d) T4 ligase restores transforming activity to both nicked and linearized DNA; (e) CCC relaxed DNA is fully active in transformation; (f) the DNA concentration-dependence of plasmid transformation is first order; and (g) plasmid transformation proceeds with a low efficiency, requiring the uptake of 103 to 104 DNA molecules per transformant. Based on this information, a model for the processing of chromosomal, plasmid and transfecting DNA is proposed.