Abstract
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N'',N''-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase acivity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified d-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced the either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane,. vectorial transfer of 2 e- from the outer to the inner surface, and scalar utilization of 2 H+ on the inner surface to reduce oxygen). In contrast, between NADH and oxygen, generation of the H+ electrochemical gradient occurs at two sites, one between NADH dehydrogenase and ubiquinone by an unspecified mechanism and the other at cytochrome o oxidase.

This publication has 2 references indexed in Scilit: