Percolation in interacting colloids

Abstract
The percolation behavior of spherical particles with attractive interactions is studied with use of Monte Carlo simulations. These systems differ from lattice Ising systems, which have been previously analyzed, in the necessity to define a shell parameter δ to specify a connected cluster. For small values of δ, correlations due to the attractive interactions drastically lower the percolation threshold in the vicinity of the gas-liquid critical point. For larger values of δ, these shifts are smaller, but the effects of long-range correlations show up as enhanced finite-size effects. The simulation results are discussed in the light of recent experiments which measure the temperature and concentration dependence of the conductivity in interacting microemulsions.

This publication has 17 references indexed in Scilit: