Inhibition of Cytochrome P450 2E1 Decreases, but Does Not Eliminate, Genotoxicity Mediated by 1,3-Butadiene

Abstract
1,3-Butadiene (BD), a rodent carcinogen, is metabolized to mutagenic and DNA-reactive epoxides. In vitro data suggest that this oxidation is mediated by cytochrome P450 2E1 (CYP2E1). In this study, we tested the hypothesis that oxidation of BD by CYP2E1 is required for genotoxicity to occur. Inhalation exposures were conducted with B6C3F1 mice using a closed-chamber technique, and the maximum rate of butadiene oxidation was estimated. The total amount of butadiene metabolized was then correlated with the frequency of micronuclei (MN). Three treatment groups were used: (1) mice with no pretreatment; (2) mice pretreated with 1,2-trans-dichloroethylene (DCE), a specific CYP2E1 inhibitor; and (3) mice pretreated with 1-aminobenzotriazole (ABT), an irreversible inhibitor of cytochromes P450. Mice in all 3 groups were exposed to an initial BD concentration of 1100 ppm, and the decline in concentration of BD in the inhalation chamber with time, due to uptake and metabolism of BD, was monitored using gas chromatography. A physiologically based pharmacokinetic model was used to analyze the gas uptake data, estimate Vmax for BD oxidation, and compute the total amount of BD metabolized. Model simulations of the gas uptake data predicted the maximum rate of BD oxidation would be reduced by 60% and 100% for the DCE- and ABT-pretreated groups, respectively. Bone marrow was harvested 24 h after the onset of the inhalation exposure and analyzed for frequency of micronuclei in polychromatic erythrocytes (MN-PCE). The frequency of MN-PCE per 1000 PCE in mice exposed to BD was 28.2 ± 3.1, 19.8 ± 2.5, and 12.3 ± 1.9, for the mice with no pretreatment, DCE-pretreated mice and ABT-pretreated mice, respectively. Although inhibition of CYP2E1 decreased BD-mediated genotoxicity, it did not completely eliminate genotoxic effects. These data suggest that other P450 isoforms may contribute significantly to the metabolic activation of BD and resultant genotoxicity.