Enzymatic Studies on a Cellulase System of Trichoderma viride

Abstract
Two highly purified cellulases [EC 3.2.1.4], II-A, and II-B, were obtained from the cellulase system of Trichoderma viride. Both cellulases split cellopentaose, retaining the β-configuration of the anomeric carbon atoms in the hydrolysis products at both pH 3.5 and 5.0. The Km values of cellulases II-A and II-B for cellotetraose were different, but their Vmax values were similar and those for cellooligosaccharides increased in parallel with chain length. Both cellulases produced predominantly cellobiose and glucose from various cellulosic substrates as well as from higher cellooligosaccharides. Cellulase II-A preferentially attacked the holoside linkage of p-nitrophenyl β-D-cellobioside, whereas cellulase II-B attacked mainly the aglycone linkage of this cellobioside. Both cellulases were found to catalyze the synthesis of cellotriose from p-nitrophenyl β-D-cellobioside by transfer of a glucosyl residue, possibly to cellobiose produced in the reaction mixture. They were also found to catalyze the rapid synthesis of cellotetraose from cellobiose, with accompanying formation of cellotriose and glucose, which seemed to be produced by secondary random hydrolysis of the cellotetraose produced. The capacity to synthesize cellotetraose from cellobiose appeared to be greater with cellulase II-B than with cellulase II-A.