Oxygen Radicals and Vascular Damage
- 1 January 1983
- book chapter
- Published by Springer Nature
- Vol. 161, 365-375
- https://doi.org/10.1007/978-1-4684-4472-8_20
Abstract
The effects of topical application of agents which produce oxygen radicals on cerebral arterioles were studied in anesthetized cats. Xanthine oxidase plus xanthine, which produced superoxide anion radical, hydrogen peroxide, and hydrogen peroxide plus ferrous sulfate, which produced the free hydroxyl radical, induced sustained dilation, reduced responsiveness to the vasoconstrictor effect of hypocapnia, and destructive lesions of the endothelium and of the vascular smooth muscle. Similar effects were produced by arachidonate, 15-HPETE, and PGG2. The effect of arachidonate was inhibited by mannitol, a free hyaroxyl radical scavenger, the effect of PGG2 was inhibited by SOD, the effect of 15-HPETE was inhibited by either catalase or SOD. These results suggest that these cerebral vascular abnormalities were produced by a single destructive free radical, probably the hydroxyl free radical, generated via interaction of superoxide and hydrogen peroxide. Cerebral vascular abnormalities similar to those produced by oxygen radicals were also seen after experimental concussive brain injury or after acute hypertension. After brain injury, activation of phospholipase C and increased brain prostaglandin concentration were demonstrated. The vascular effects of brain injury and acute hypertension were inhibited by free radical scavengers. The results suggest that, in these conditions, vascular damage is induced by oxygen radicals generated from arachidonate in association with increased prostaglandin synthesis.This publication has 19 references indexed in Scilit:
- Cyclooxygenase Products of Arachidonic Acid Metabolism in Cat Cerebral Cortex After Experimental Concussive Brain InjuryJournal of Neurochemistry, 1981
- Cerebral Arteriolar Damage by Arachidonic Acid and Prostaglandin G 2Science, 1980
- Accumulation of Cyclooxygenase Products of Arachidonic Acid Metabolism in Gerbil Brain During Reperfusion After Bilateral Common Carotid Artery OcclusionJournal of Neurochemistry, 1980
- REACTIONS OF O‐2, H2O2 AND OTHER OXIDANTS WITH SULFHYDRYL ENZYMES‡Photochemistry and Photobiology, 1978
- The Biology of Oxygen RadicalsScience, 1978
- Oxygen-Dependent Microbial Killing by PhagocytesNew England Journal of Medicine, 1978
- Detailed Description of a Cranial Window Technique for Acute and Chronic ExperimentsStroke, 1975
- Calcium accumulation by subcellular fractions from vascular smooth muscleJournal of Molecular and Cellular Cardiology, 1974
- Biological protection by superoxide dismutaseBiochemical and Biophysical Research Communications, 1973
- THE LUXURY-PERFUSION SYNDROME AND ITS POSSIBLE RELATION TO ACUTE METABOLIC ACIDOSIS LOCALISED WITHIN THE BRAINThe Lancet, 1966