Treatment of stroke in rat with intracarotid administration of marrow stromal cells
Top Cited Papers
- 26 June 2001
- journal article
- Published by Wolters Kluwer Health in Neurology
- Vol. 56 (12), 1666-1672
- https://doi.org/10.1212/wnl.56.12.1666
Abstract
Objective: To measure the therapeutic efficacy for the treatment of stroke with intra-arterial administration of bone marrow stromal cells (MSC). Background: MSC have characteristics of stem and progenitor cells. The hypothesis that MSC injected into the internal carotid artery after stroke enter into ischemic brain and improve neurologic recovery was tested. Methods: Twenty-five adult Wistar rats were subjected to transient (2-hour) middle cerebral artery occlusion alone (n = 9), or treated with intracarotid arterial injection of 200 μL phosphate-buffered saline (n = 8) or 2 × 106 MSC in 200 μL phosphate-buffered saline (n = 8) 1 day after ischemia. MSC were harvested and isolated from additional adult rats and then cultured and labeled with bromodeoxyuridine. Rats were subjected to neurologic functional tests (adhesive-removal, modified neurologic severity scores) before and at 1, 7, and 14 days after middle cerebral artery occlusion. Immunohistochemistry was used to identify cell-specific proteins of bromodeoxyuridine-reactive MSC. Results: Bromodeoxyuridine-reactive cells (∼21% of 2 × 106 injected MSC) distributed throughout the territory of the middle cerebral artery by 14 days after ischemia. Some bromodeoxyuridine-reactive cells expressed proteins characteristic of astrocytes and neurons. Rats with intra-arterial transplantation of MSC exhibited improvement on the adhesive-removal test (p < 0.05) and the modified neurologic severity scores (p < 0.05) at 14 days compared with controls. Conclusions: MSC injected intra-arterially are localized and directed to the territory of the middle cerebral artery, and these cells foster functional improvement after cerebral ischemia.Keywords
This publication has 40 references indexed in Scilit:
- Adult rat and human bone marrow stromal cells differentiate into neuronsJournal of Neuroscience Research, 2000
- Mammalian Neural Stem CellsScience, 2000
- Out of Eden: Stem Cells and Their NichesScience, 2000
- Why Stem Cells?Science, 2000
- Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repairGene Therapy, 1998
- Behavioral Deficits Following Experimental Subarachnoid Hemorrhage in the RatJournal of Neurotrauma, 1994
- A Semiautomated Method for Measuring Brain Infarct VolumeJournal of Cerebral Blood Flow & Metabolism, 1990
- Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats.Stroke, 1989
- Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke, 1989
- Monoclonal Antibody to 5-Bromo- and 5-Iododeoxyuridine: A New Reagent for Detection of DNA ReplicationScience, 1982