Dendrimers are presently one of the most intensely studied classes of compounds because of their unusual structure. They can be described as a jungle of entangled branches traversed by winding trails which lead to sweet fruits and bright blossoms. On these trails one can reach the thicket's interior as well as find a way out. Expressed less lyrically, this thicket stands for regularly branched, densely packed structures, and the trails represent voids and channels not filled by bent back branches but by solvent. The fruit and blossoms are photochemically, electrochemically, or synthetically addressable units, catalytically active sites, etc., and the back and forth on the trails stands for transport processes. In a mathematical sense dendrimers are enveloped by an interface, which defines what is either in or out. This interface is shaped like a sphere if the trails are filled to bursting. Otherwise dendrimers are more flattened like amoeba, especially if in contact with a surface. The high density of the functional groups, the expansion of these compounds to a range of several nanometers, the existence of usable “surface” and transport possibilities in and with them have made dendrimers interesting candidates for many applications. This review describes how dendrimer construction and polymer synthesis were combined and used to move from fully or flattened spherical shapes to cylindrical ones. The shape-inducing influence of dendritic substituents can be driven to create nanoobjects with a cylindrical shape, which not only considerably widens the range of applications for the dendrimer class but also opens up new perspectives for supramolecular and polymer chemistry. Because of the sheer size of the described objects and complexity of shape-related properties, research in this area must necessarily be interdisciplinary. This article tries to mirror this by giving special attention not only to synthesis but also the characterization and behavior of these compounds in bulk and at interfaces. Furthermore, potential application fields are described.