Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators
Top Cited Papers
Open Access
- 8 November 2009
- journal article
- research article
- Published by Springer Nature in Nature Methods
- Vol. 6 (12), 875-881
- https://doi.org/10.1038/nmeth.1398
Abstract
An improved version of the GCaMP genetically encoded calcium indicator, called GCaMP3, has higher calcium affinity and increased baseline fluorescence, dynamic range and stability. GCaMP3 performs better than existing genetically encoded calcium indicators in several assays and organisms, including in vivo imaging of neuronal signaling in worms, flies and mice. Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation–evoked fluorescence responses were significantly enhanced with GCaMP3 (4–6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.Keywords
This publication has 45 references indexed in Scilit:
- A genetically encoded calcium indicator for chronic in vivo two-photon imagingNature Methods, 2008
- Reporting neural activity with genetically encoded calcium indicatorsBrain Cell Biology, 2008
- Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenesNature Genetics, 2008
- Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile MiceNeuron, 2007
- Calcium Green FlAsH as a genetically targeted small-molecule calcium indicatorNature Chemical Biology, 2007
- Rapid Redistribution of Synaptic PSD-95 in the Neocortex In VivoPLoS Biology, 2006
- Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in theDrosophilaAntennal LobeJournal of Neuroscience, 2005
- Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly BrainCell, 2003
- Chapter 33 Ectopic Expression in DrosophilaMethods in Cell Biology, 1994
- Neuronal Domains in Developing NeocortexScience, 1992