Abstract
The rate of net CO2 assimilation (A), the stomatal (gs) and residual (gr) conductances to CO2, the intercellular CO2 concentration, the CO2 compensation points at 21% O221) and at 2% O22), and the amounts of dry matter, nitrogen, and carbohydrates were determined, from anthesis through grain filling, in the flag leaf blade and sheath of spring wheat (Triticum aestivum L. cv Kolibri). The nitrogen content and the rate of net CO2 assimilation declined slowly until the onset of senescence in both organs, about 3 weeks after anthesis. During senescence the reduction of A in both organs was not primarily caused by a decrease in gs; the main factor is the decrease in gr. From values of Γ21 and Γ2 it is suggested that the rate of respiration in the light contributing to the CO2 compensation point is higher in sheaths than in blades irrespective of the O2 level considered. The role of sheaths storing and later transporting assimilates to the developing grains seems to be more important for shoot yield than that of sheaths functioning as photosynthetic organs after the onset of senescence occurs. It is suggested that accumulation of carbohydrates in leaves might somehow trigger senescence in the flag leaf blade and sheath simultaneously.