Piezoelectric composites with high sensitivity and high capacitance for use at high pressures

Abstract
A type of piezoelectric composite has been developed for oceanographic applications. The composites have a large figure of merit (d/sub h/*g/sub h/ or d/sub h/*g/sub h//tan delta , where d/sub h/ is the hydrostatic piezoelectric voltage coefficient), a large dielectric constant (K) and low dielectric loss, and great mechanical strength. A shallow cavity between the PZT ceramics and thick metallic electrode is designed to convert a portion of the z-direction stress into a large radial and tangential stress of opposite sign. thereby causing the d/sub 33/ and d/sub 31/ contributions to d/sub h/ to add rather than subtract, and raising the figure of merit. Theoretical stress analysis was carried out using an axisymmetric finite element method. Experimental results show that the d/sub h/*g/sub h/, K, and withstandable pressure are extremely high.<>

This publication has 6 references indexed in Scilit: