Abstract
The Palmer Drought Severity Index (PDSI) is routinely made available by NOAA for operational use, and it has also been calculated across the United States on a historical basis back to 1895 (Karl et al., 1983). Traditionally, the coefficients used in the calculation of the PDSI have been based on an anomalously hot and dry period across much of the United States (1931–60). By changing the base period used to calibrate the coefficients, the magnitude and the sign of the PDSI change significantly in many areas of the United States. Often the changes are larger than those that occur when the potential evapotranspiration is forced to a constant equal to the long-term monthly mean potential evapotranspiration. This sensitivity to base period calibration has important implications in the interpretation of operational or hindcast values of the PDSI for forest fire danger and other applications. The less frequently used Palmer moisture anomaly index (Z-index) is much less sensitive to changes in the cali... Abstract The Palmer Drought Severity Index (PDSI) is routinely made available by NOAA for operational use, and it has also been calculated across the United States on a historical basis back to 1895 (Karl et al., 1983). Traditionally, the coefficients used in the calculation of the PDSI have been based on an anomalously hot and dry period across much of the United States (1931–60). By changing the base period used to calibrate the coefficients, the magnitude and the sign of the PDSI change significantly in many areas of the United States. Often the changes are larger than those that occur when the potential evapotranspiration is forced to a constant equal to the long-term monthly mean potential evapotranspiration. This sensitivity to base period calibration has important implications in the interpretation of operational or hindcast values of the PDSI for forest fire danger and other applications. The less frequently used Palmer moisture anomaly index (Z-index) is much less sensitive to changes in the cali...