In Vivo Pharmacodynamics of a New Triazole, Ravuconazole, in a Murine Candidiasis Model

Abstract
In vivo studies have characterized the pharmacodynamic characteristics of the triazole fluconazole. These investigations demonstrated that the ratio of the area under the concentration-time curve from 0 to 24 h to the MIC (24-h AUC/MIC ratio) is the critical pharmacokinetic/pharmacodynamic (PK/PD) parameter associated with treatment efficacy. Further analysis demonstrated that a fluconazole 24-h AUC/MIC ratio of 20 to 25 was predictive of treatment success in both experimental models and clinical trials. We used a neutropenic murine model of disseminated Candida albicans infection to similarly characterize the time course activity of the new triazole ravuconazole. The PK/PD parameters (percent time above the MIC, AUC/MIC ratio, and peak level in serum/MIC ratio) were correlated with in vivo efficacy, as measured by organism number in kidney cultures after 24 and 72 h of therapy. Ravuconazole kinetics and protein binding were performed in neutropenic infected mice. Peak/dose and AUC/dose values ranged from 0.03 to 0.04 and 0.30 to 0.34, respectively. Serum elimination half-life ranged from 3.9 to 4.8 h. Protein binding was 95.8%. Single-dose postantifungal effect studies demonstrated prolonged suppression of organism regrowth after serum ravuconazole levels had fallen below the MIC. Treatment efficacies with the five dosing intervals studied were similar, supporting the argument for the AUC/MIC ratio as the PK/PD parameter predictive of efficacy. Nonlinear regression analysis also suggested that the AUC/MIC ratio was strongly predictive of treatment outcomes (AUC/MIC ratio, R 2 = 91%; peak/MIC ratio, R 2 = 85%; percent time above the MIC, R 2 = 47 to 65%). Similar studies were conducted with seven additional C. albicans isolates with various ravuconazole susceptibilities (MIC, 0.016 to 0.12 μg/ml) to determine if a similar 24-h AUC/MIC ratio was associated with efficacy. The ravuconazole free-drug AUC/MIC ratios were similar for all of the organisms studied (10 to 36; mean ± SD = 20.3 ± 8.2; P = 0.43). These free-drug AUC/MIC ratios are similar to those observed for fluconazole in this model.

This publication has 23 references indexed in Scilit: