Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions

Abstract
Aims: Scarce knowledge about the distribution of enterococci species in wastewaters limits any statement on their reliability as faecal indicators or the implications of antibiotic resistance transmission by these organisms through the water cycle. Enterococci have been involved in nosocomial infections and the spreading of antibiotic resistance through the food chain. The species distribution of enterococci and the presence of resistant strains to vancomycin and erythromycin were analysed in more than 400 raw and treated urban wastewaters, surface waters receiving these treated wastewaters and hospital wastewaters from three European countries. Methods and Results: A total of 9296 strains were isolated and biochemically phenotyped. The species identification was based on the comparison of biochemical profiles with those of more than 20 000 enterococci isolates from an international study. The prevalence of enterococcal isolates resistant to erythromycin (ERE) and vancomycin (VRE) was also analysed. ERE strains were present in a high proportion in all the studied samples. VRE strains were also isolated in all studied countries despite the time elapsed since the use of antimicrobial glycopeptides in animal production was banned in the European Union. Conclusions: Enterococcus faecalis and Ent. faecium were the most abundant species in all the studied wastewaters. All the studied wastewaters demonstrated high diversity and similar population structure and composition. ERE and VRE isolates were detected in most of the wastewaters. Significance and Impact of the Study: Urban and hospital wastewaters are useful targets for the evaluation of the prevalence of ERE and VRE isolates in the environment. It appears that these bacteria could pass through wastewater treatment plants and be transferred to surface waters.