Importance of the indentation depth in tapping-mode atomic force microscopy study of compliant materials

Abstract
We studied the response of a cantilever tapping on polydimethylsiloxane(PDMS) samples of different crosslink density. It is shown experimentally that the tip deeply penetrates into the compliant PDMS samples. A more compliant material leads to a larger indentation such that at a given set-point ratio the indentation force is nearly constant on samples of different elastic moduli. This confirms the simulations by J. Tamayo and R. Garcia [Appl. Phys. Lett. 71, 2394 (1997)] that phase contrast acquired at constant set point does not depend on the sample’s modulus if other contrast relevant parameters remain identical. PDMS samples of different crosslink density are distinguished in terms of amplitude and phase versus distance measurements if the tip-sample interaction is made substantially large and indentation is taken into account.