Inheritance and activity of some esterases associated with organophosphate resistance in mosquitoes of the complex ofCulex pipiensL. (Diptera: Cnlicidae)

Abstract
Eighteen strains of the complex ofCulex pipiensL. from Africa, Asia and Europe were bioassayed for resistance to chlorpyrifos and electro-phoresed and stained for esterases. Susceptible strains showed only low activity esterase bands. The resistant strains ofC. quinquefasciatusSay from hot countries (Liberia, Nigeria, Sri Lanka, Tanzania, Thailand) all showed the same two high intensity esterase bands (Rm 0·60 + 0·82). Different patterns of high esterase were found in resistantC. pipiensstrains from cooler localities in Nairobi, Kenya (Rm 100), and Mont-pellier, France (Rm 0–50). Selection experiments on strains originally polymorphic for resistance and esterase pattern showed, without exception, that high esterase remained associated with resistance, and it is concluded that the association is almost certainly causal and not merely due to genetic linkage. The high intensity esterase bands were probably due to alleles of the loci Est-l, Est-2 and Est-3, separated by crossover distances of approximately 2·4 and 5·5 units, respectively. Strains monomorphic for what appeared to be the same high esterase pattern varied markedly in resistance level. Enzyme assays showed a direct relationship between levels of enzyme activity and resistance. Bioassays with fenthion and chlorpyrifos revealed differences in the relative resistance ofC. quinquefasciatusfrom Colombo (Sri Lanka) and Dar-es-Salaam (Tanzania). Despite these differential degrees of cross-effectiveness, it is concluded that high intensity esterases are reliable indicators of organophosphate resistance in mosquitoes of theC. pipienscomplex, although the possibility of other resistance mechanisms means that the lack of abnormally active esterases does not necessarily indicate the absence of resistance.