Shear stabilization of critical fluctuations in bulk polymer blends studied by small angle neutron scattering

Abstract
The small angle neutron scattering (SANS) technique has been used to study the concentration fluctuations of binary polymer mixtures under shear. Two different polymer systems, deuterated polystyrene/poly(vinylmethylether) and deuterated polystyrene/polybutadiene, have been studied as a function of temperature and shear rate. Due to the small wavelength of the incident neutron radiation compared with light, the shear dependence of concentration fluctuations in the one‐phase region and in the strong shear limit has been obtained from the q dependence of the scattering structure factor for the first time. From a detailed analysis of the scattering structure factor S(q) a crossover value of the wave number qs has been obtained as a function of temperature and shear rate. This crossover wave number represents the inverse of the lowest fluctuation mode which is not affected by shear. The temperature, viscosity, and shear rate dependence of this experimentally determined qs agree well with a simple rotatory diffusion model and also the dynamic mode–mode coupling analysis of Kawasaki and Ferrell. The apparent spinodal temperature as a function of shear rate is shown to be consistent with the prediction of Onuki.