Reconfigurable flight control via multiple model adaptive control methods

Abstract
An aircraft flight control system with reconfigurable capabilities is considered. A multiple model adaptive controller (MMAC) is shown to provide effective reconfigurability when subjected to single and double failures of sensors and/or actuators. A command generator tracker/proportional-plus-integral/Kalman filter (CGT/PI/KF) form of controller was chosen for each of the elemental controllers within the MMAC algorithm and each was designed via LQG synthesis to provide desirable vehicle behavior for a particular failure status of sensors and actuators. The MMAC performance is enhanced by an alternate computation of the MMAC hypothesis probabilities, use of maximum a posteriori probability (MAP) versus Bayesian form of the MAC (or a modified combination of both), and reduction of identification ambiguities through scalar residual monitoring for the case of sensor failures.

This publication has 6 references indexed in Scilit: