Photochemical Characteristics in a Soybean Mutant

Abstract
Chloroplasts were isolated from wild type (DG) and heterozygous mutant (LG) soybean (Glycine max) leaves, and various biochemical functions were compared. Noncyclic electron transport, and its coupled phosphorylation, cyclic phosphorylation and H+ ion transport in both systems, were 3 to 5 times faster in rate (on a chlorophyll basis) in the mutant plastids. On a chloroplast lamellar protein basis, the mutant plastid rates were 1.5 to 2.5 times the wild type rates.