Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires

Abstract
We have characterized the fundamental photoluminescence (PL) properties of individual, isolated indium phosphide (InP) nanowires to define their potential for optoelectronics. Polarization-sensitive measurements reveal a striking anisotropy in the PL intensity recorded parallel and perpendicular to the long axis of a nanowire. The order-of-magnitude polarization anisotropy was quantitatively explained in terms of the large dielectric contrast between these free-standing nanowires and surrounding environment, as opposed to quantum confinement effects. This intrinsic anisotropy was used to create polarization-sensitive nanoscale photodetectors that may prove useful in integrated photonic circuits, optical switches and interconnects, near-field imaging, and high-resolution detectors.