Abstract
A crucial point in the biosynthesis of cyclo (His-Pro), an endogenous and biologically active cyclic dipeptide, is the spontaneous cyclization of its precursor L-histidyl-L-prolineamide (His-ProNH2). In this study the kinetics and mechanism of the cyclization process has been investigated. His-ProNH2 was found to be converted quantitatively to cyclo(His-Pro) in aqueous solution at pH 2–10 and 37°C, the rate of cyclization being maximal at pH 6–7. Buffer substances such as phosphate (pH 6–7.4) were found to catalyse the cyclization. The bell-shaped pH-rate profile observed was accounted for by assuming spontaneous and specific acid- and base-catalysed reactions of the His-ProNH2 species in which the imidazole group is protonated and the primary amino group unprotonated. The much more rapid rate of cyclization of His-ProNH2 (t 1/2 of 140 min at pH 6–7 and 37°C) relative to other proline-containing di- and tripeptides studied was suggested to be due to an intramolecular general acid catalytic effect by the protonated imidazole group. In the presence of human plasma enzymatic hydrolysis of His-ProNH2 competed with the cyclization and predominated greatly at 80% plasma concentration.

This publication has 22 references indexed in Scilit: