Abstract
The brains of 18-day-old rats utilize glucose and ketone bodies. The rates of acetyl-CoA formation from these substrates and of glycolysis were determined in vivo from the labelling of intermediary metabolites after intraperitoneal injection of d-[2-14C]glucose, l(+)-[3-14C]- and l(+)-[U-14C]-lactate and d(−)-3-hydroxy[14C]butyrate. Compartmental analysis was used in calculating rates to allow for the rapid exchange of blood and brain lactate, the presence in brain of at least two pools each of glucose and lactate, and the incomplete equilibration of oxaloacetate with aspartate and of 2-oxoglutarate with glutamate. Results were as follows. 1. Glucose and ketone bodies labelled identical pools of tricarboxylate-cycle metabolites, and were in every way alternative substrates. 2. The combined rate of oxidation of acetyl-CoA derived from pyruvate (and hence glucose) and ketone bodies was 1.05μmol/min per g. 3. Ketone bodies contributed 0.11–0.53μmol/min per g in proportion to their concentration in blood, with a mean rate of 0.30μmol/min per g at 1.24mm. 4. Pyruvate and ketone bodies were converted into lipid at 0.018 and 0.008μmol/min per g respectively. 5. Glycolysis, at 0.48μmol/min per g, was more rapid in most rats than pyruvate utilization by oxidation and lipid synthesis, resulting in a net output of lactate from brain to blood. 6. Rates of formation of brain glutamate, glutamine and aspartate were also measured. Further information on the derivation of the models has been deposited as Supplementary Publication SUP 50034 (18 pages) at the British Library, Lending Division (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7QB, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.