Abstract
Bromobenzene is a well-known environmental toxin which causes liver and kidney damage through CYP450-mediated bio-activation to generate reactive metabolites and, consequently, oxidative stress. The present study aimed to evaluate the possible protective role of withaferin A against bromobenzene-induced liver and kidney damage in mice. Withaferin A (10 mg/kg) was administered orally to the mice for 8 days before intragastric intubation of bromobenzene (10 mmol/kg). As results of this experiment, the levels of liver and kidney functional markers, lipid peroxidation, and cytokines (TNF-α and IL-1β) presented an increase and there was a decrease in anti-oxidant activity in the bromobenzene-treated group of mice. Pre-treatment with withaferin A not only significantly decreased the levels of liver and kidney functional markers and cytokines but also reduced oxidative stress, as evidenced by improved anti-oxidant status. In addition, the mitochondrial dysfunction shown through the decrease in the activities of mitochondrial enzymes and imbalance in the Bax/Bcl-2 expression in the livers and kidneys of bromobenzene-treated mice was effectively prevented by pre-administration of withaferin A. These results validated our conviction that bromobenzene caused liver and kidney damage via mitochondrial pathway and withaferin A provided significant protection against it. Thus, withaferin A may have possible usage in clinical liver and kidney diseases in which oxidative stress and mitochondrial dysfunction may be existent.