Xenobiotic Transport across Isolated Brain Microvessels Studied by Confocal Microscopy
- 1 December 2000
- journal article
- Published by American Society for Pharmacology & Experimental Therapeutics (ASPET) in Molecular Pharmacology
- Vol. 58 (6), 1357-1367
- https://doi.org/10.1124/mol.58.6.1357
Abstract
To identify specific transporters that drive xenobiotics from central nervous system to blood, the accumulation of fluorescent drugs was studied in isolated capillaries from rat and pig brain using confocal microscopy and quantitative image analysis. Luminal accumulation of daunomycin and of fluorescent derivatives of cyclosporine A (CSA) and ivermectin was concentrative, specific, and energy-dependent (inhibition by NaCN). Transport was reduced by PSC 833, ivermectin, verapamil, CSA, and vanadate, but not by leukotriene C4(LTC4), indicating the involvement of P-glycoprotein. Luminal accumulation of the fluorescent organic anions sulforhodamine 101 and fluorescein methotrexate was also concentrative, specific, and energy-dependent. LTC4, chlorodinitrobenzene, and vanadate reduced transport of these compounds, but PSC 833 and verapamil did not, indicating the involvement of a multidrug resistance-associated protein (Mrp). Immunostaining localized P-glycoprotein and Mrp2 to the luminal surface of the capillary endothelium and quantitative polymerase chain reaction showed Mrp1 and Mrp2 expression. Finally, the HIV protease inhibitors saquinavir and ritonavir were potent inhibitors of transport mediated by both P-glycoprotein and Mrp. These results validate a new method for studying drug transport in isolated brain capillaries and implicate both P-glycoprotein and one or more members of the Mrp family in drug transport from central nervous system to blood.Keywords
This publication has 31 references indexed in Scilit:
- Isolated brain capillaries: an in vitro model of blood–brain barrier researchPublished by Cambridge University Press (CUP) ,1998
- In Vitro Blood–Brain Barrier Permeability of Nevirapine Compared to Other HIV Antiretroviral AgentsJournal of Pharmaceutical Sciences, 1998
- The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors.Journal of Clinical Investigation, 1998
- Brain Microvascular and Astrocyte Localization of P‐GlycoproteinJournal of Neurochemistry, 1997
- Functional Expression of P‐Glycoprotein in an Immortalised Cell Line of Rat Brain Endothelial Cells, RBE4Journal of Neurochemistry, 1996
- Transport of cyclosporin A across the brain capillary endothelial cell monolayer by P-glycoproteinBiochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1994
- Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugsCell, 1994
- High levels of P-glycoprotein detected in isolated brain capillariesBiochimica et Biophysica Acta (BBA) - Biomembranes, 1993
- Energy state of bovine cerebral microvessels: Comparison of isolation methodsMicrovascular Research, 1988
- Rapid Sequestration and Degradation of Somatostatin Analogues by Isolated Brain MicrovesselsJournal of Neurochemistry, 1985