Ladder-Type Pentaphenylenes and Their Polymers: Efficient Blue-Light Emitters and Electron-Accepting Materials via a Common Intermediate
- 12 May 2004
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 126 (22), 6987-6995
- https://doi.org/10.1021/ja0398823
Abstract
A new route to ladder-type pentaphenylenes has been developed in which both good hole-accepting p-type and electron-accepting n-type materials can be prepared from a common intermediate. This key intermediate is a pentaphenylene diester 5 obtained in high yield by Suzuki coupling of 2 equiv of fluorene boronates with 2,5-dibromoterephthalate. Addition of aryllithium followed by ring closure with boron trifluoride produced a blue-emitting ladder-type pentaphenylene. Bromination followed by reductive polymerization with nickel(0) gave new high molecular mass polymers, which show efficient blue emission with a very small Stokes shift. These polymers bridge the gap in emission between polyfluorenes and fully ladder-type polyphenylenes. An alternative ring closure of the dibromopentaphenylene diester 14 with acid made a diketone that is a good electron-accepting material, as it displays a reversible two-electron reduction. The reduction onset potential of −0.875 V against Ag/Ag+ corresponds to a lowest unoccupied molecular orbital (LUMO) energy level of 3.53 eV, comparable to the work function of magnesium, suggesting that this unit could be used to greatly increase the injection of electrons into polymers containing it in a light-emitting diode (LED) or solar cell. A red-emitting material was prepared by Suzuki coupling of the dibromopentaphenylene 10b with a perylene dye, thus offering the prospect of tuning the emission from pentaphenylene materials over the whole visible range by attachment of suitable dyes. Unoptimized single-layer organic LEDs that used 11b showed stable pure-blue emission with brightnesses of over 200 cd/m2 at 7 V, with moderate efficiencies.Keywords
This publication has 36 references indexed in Scilit:
- Correlation Between Molecular Structure, Microscopic Morphology, and Optical Propertiesof Poly(tetraalkylindenofluorene)sAdvanced Functional Materials, 2002
- Organic Thin Film Transistors for Large Area ElectronicsAdvanced Materials, 2002
- Polyfluorene Homopolymers: Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized ElectroluminescenceMacromolecular Rapid Communications, 2001
- Plastic Solar CellsAdvanced Functional Materials, 2001
- Semiconducting (Conjugated) Polymers as Materials for Solid-State LasersAdvanced Materials, 2000
- Blue light emitting polymersProgress in Polymer Science, 2000
- The electroluminescence of organic materialsJournal of Materials Chemistry, 2000
- Bridging the Gap between Polyfluorene and Ladder-Poly-p-phenylene: Synthesis and Characterization of Poly-2,8-indenofluoreneMacromolecules, 2000
- Ladder-type materialsJournal of Materials Chemistry, 1999
- Electroluminescent Conjugated Polymers—Seeing Polymers in a New LightAngewandte Chemie International Edition, 1998